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The plane steady flow of a grounded ice sheet is analysed under the assumption that 
the ice behaves as a nonlinearly viscous fluid with a strongly temperature-dependent 
rate factor. It is supposed that the accumulation/ablation distribution on the 
(unknown) free surface is prescribed, and that there is a given basal sliding condition 
connecting the tangential velocity, tangential traction and normal pressure. The basal 
boundary is defined as the smooth contour which describes the mean topography 
viewed on the ice-sheet lengthscale, and is assumed to have small slope. The 
perturbation analysis which reduces the isothermal or constant rate factor equations 
to an ordinary differential equation for the leading-order profile is now extended with 
similar success to the non-isothermal problem when the temperature distribution is 
prescribed. That is, the thermomechanically coupled energy balance is not solved, 
but families of temperature distributions qualitatively compatible with observed 
patterns are adopted to exhibit the effects of significant creep-rate variation with 
temperature. 

1. Introduction 
Large ice sheets have significant temperature variation with depth, with melting 

or near-melting temperatures in some basal regions to 30 K or more colder temper- 
atures a t  the surface, but more modest temperature gradients over their much greater 
spans. Heat advection is a dominant contribution to  the overall energy balance, and 
the viscous shear response of ice is strongly temperature dependent, so a solution of 
the full thermomechanically coupled energy and momentum equations is required to  
determine a valid temperature field. However, observation has indicated qualitative 
features of temperature distributions, and here we adopt a series of temperature 
patterns t o  investigate the influence of temperature on profiles and flows determined 
by the mass and momentum balances. 

The temperature-dependent rate factor describes a decreasing viscosity as 
temperature increases, with the most rapid rate of decrease occurring as melting is 
approached. It is therefore clear that  the most significant temperature effect will arise 
in near-temperate zones, which would be located in basal regions. This suggests that 
the higher shear-strain rates would occur in the warmer basal regions, and that the 
differential motion between the surface and an upper boundary of this basal shear 
layer would be relatively small. Nye’s (1959) pioneering model of ice-sheet flow adopts 
the extreme approximation that there is no differential motion between surface and 
base; that  is, the longitudinal velocity is independent of depth. The shear flow is 
relegated to a thin warm basal layer, and its effect is described only through a basal 
sliding law. The consequence of this extreme approximation is that  the internal flow 
is independent of the viscous response of the ice. Here we are able to demonstrate 
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that the profile and flow for a given accumulation/ablation distribution and given 
sliding law depend significantly on the temperature distribution, and that the basal 
layer of high strain-rate gradient which can occur is not generally thin enough to be 
modelled by such a discontinuity. It must be concluded that an elementary model 
that neglects the shearing throughout the ice sheet cannot, in general, provide a 
satisfactory description of either flow or profile. 

Plane steady flow of an isothermal sheet or for temperature-independent ice creep 
has been successfully treated by a perturbation analysis (Morland & Johnson 1980, 
1982), which yields a second-order ordinary differential equation, subject to  deter- 
mined initial conditions a t  a margin, for the leading-order profile function. That is, the 
system of elliptic partial differential equations on an unknown domain is reduced to 
a standard initial-value problem for an ordinary differential equation. The small 
parameter, which is determined by magnitudes of material parameters and prescribed 
boundary conditions, is a measure of the small surface-slope magnitude. Such neglect 
of temperature effects is unrealistic except for a near-temperate glacier, but the same 
variable and coordinate scalings implied by the mass and momentum balances follow 
also for a general unsteady, thermomechanically coupled flow problem (Morland 
1983), and the leading-order steady plane flow is described by a simpler, parabolic 
system of partial differential equations. 

Hutter (1982) proposed that the thermomechanical problem for a steeply inclined 
bed, which has simpler expressions for the stress and velocity in terms of the unknown 
profile, can be treated as a sequence of mechanical problems with prescribed 
temperature field and prescribed surface profile, and outlines an approach in his recent 
(1983) text. The temperature field and profile a t  each stage are to be recalculated 
using the previous stress and velocity fields, but the initial approximate solution 
involves the assumption of both temperature field and surface profile. Here we 
uncouple the energy and momentum equations by prescribing a temperature field, 
but show that the mechanical problem for the leading-order stress and velocity fields 
and unknown profile again reduces to  a second-order differential equation subject to 
two boundary conditions at one margin. Solutions for different assumed temperature 
patterns are determined to  display the influence of temperature distribution on 
velocity fields and profile. While the energy balance could now be used to construct 
an iteration scheme for the temperature field to treat the thermomechanically 
coupled flow, direct numerical solution of the parabolic system (Morland 1983) 
appears to be a more attractive proposition. 

The temperature patterns used for the illustrations have the following features : 
(i) The surface temperature decreases with height a t  a rate 0.8 K per 100 m, and 

the vertical t)emperature gradient a t  the surface is zero, reflecting negligible heat 
conduction from the surface. 

(ii) Alternative values of - 1 K per 100 m and -2.5 K per 100 m are assumed for 
the vertical temperature gradient at the base, reflecting respective geothermal heat 
fluxes of 0.8 x lo6 J m-2 a-l and 2.0 x lo6 J m-2 a-l if frictional heating and dis- 
sipation are negligible at the base. 

(iii) Four patterns of basal temperature distribution are considered : 
( a )  uniform; 
( b )  monotonic decreasing from the margin; 
(c) monotonic increasing from the margin; 
( d )  monotonic increasing from the margin followed by a monotonic decreasing 

Results and comparisons show distinct profile and flow solutions from the different 
patterns. 

stage. 
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The first sliding law used is that inferred by Morland, Smith & Boulton (1983) from 
data for the 70" N section of the Greenland Ice Sheet, but based on the isothermal 
(mean-temperature) analysis of Morland & Johnson (1980, 1982). We next prescribe 
a temperature distribution for the Greenland Ice Sheet section, and use the present 
temperature-dependent analysis with the profile and accumulation data to determine 
a modified sliding law. Repeating some of the above illustrations with the modified 
law shows little difference in the overall results, and we deduce that details of the 
sliding law when sliding velocities are relatively small away from the margins, have 
little large-scale influence. Away from the margin, a simple no-slip condition may be 
the most satisfactory approximation for the basal boundary condition. 

2. Ice properties 
We make the conventional assumption that, on the long timescales of material ice 

flows, the ice responds as an incompressible nonlinearly viscous fluid with a 
temperature-dependent rate factor and with deviatoric stress and strain rate parallel. 
The deviatoric stress S and mean pressure p are related to the stress CT by 

S = a+p/, p = -$ t ra ,  t rS  = 0. ( 1 )  
Let D be the strain rate, given by the spatial gradient of the velocity field v ,  and 
let T denote temperature. The viscous shear response is described by the equivalent 
relations 

where 

and go and Do are respectively stress and strain-rate units chosen to normalize the 
relations (2). While, in general, there is no explicit inversion between the material 
functions $(I) and w ( J ) ,  there are important implicit reciprocal relations which follow 
from the equivalent relations (2), namely 

$(fMJ) = 1,  (4) 

I =  Jw2(J)  = G(J),  J = I$'(I) = G-'(f). ( 5 )  
With the units 

go = lo5 N m-2, Do = 1 a-l = 3.18 x lo-* s-l, (6) 
Glenn's (1955) uniaxial compression data at 273.13 K has an excellent polynomial 
approximation (Smith & Morland 1981) 

(7) 
over the shear-stress range 0-5 x lo5 N m-2, particularly at the low shear stresses 
typical in natural ice flows. For shear-stress magnitudes below 2a0 (J  < 4) we see that 
both w ( J )  and its derivative w'(J)  are order unity, but also that $(O) = l/w(O) is of 
order unity (and non-zero), which reflects a bounded viscosity a t  zero stress. A 
conventional power-law representation with exponent greater than unity implies 
unbounded $ ( O ) ,  and in turn unbounded longitudinal stress a t  the free surface in the 
leading-order isothermal solution (Morland & Johnson 1982), which can be removed 
only by a surface boundary layer of high stress gradient (Johnson & McMeeking 1982). 
Such singular behaviour is not physically expected, and the associated singular 
perturbation analysis and asymptotic; matching adds considerable complexity to even 

w ( J )  = 0.3336 + 0.3200J+ 0.02963J2, 
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- T a a' &'/a 
0 1.068 9.673 9.057 

-0.5 0.0805 0.254 3.155 
-1.0 0.0180 0.053 2.949 
-1.5 0.00412 0.0122 2.949 
- 2.0 0.00094 0.002 77 2.949 

TABLE 1 .  The rate factor G(T) and its gradient 

the steady isothermal flow solution. On both counts the polynomial representation 
(7)  is more satisfactory, in addition to providing the better data correlation. 

Mellor & Testa's (1969) uniaxial compression data a t  constant stress and constant 
temperatures over the wide range 212-273 K have been closely correlated by a rate 
factor (Smith & Morland 1981) 

a(T) = a,G(T), T =  273.15K+(20K)T, 
(8) 1 C ( F )  = 0.7242 ell.95'37F+ 0.3438 @Q494T. 

Here a(273 K) = a,, while the laboratory data was normalized on a(273 K)  = 1 .  The 
additional scale factor a, ( < 1)  is introduced to achieve the lower strain rates at given 
stress inferred from ice-shelf data in comparison with Glen's laboratory data. An 
equivalent device was adopted by Morland et al. (1983) in an estimation of basal 
sliding velocities from the ice-sheet data, where the assumed isothermal temperature 
of the Greenland Ice Sheet was reduced to ensure sliding in the sensible direction 
everywhere. We regard a reduction factor a, = 0.2 as a lower limit for consistency 
with ice-shelf data (Morland & Shoemaker 1982). The values of 6(T) and its gradient 
over the temperature range 233.15-273.15 K are illustrated in table 1. The most rapid 
decrease occurs near melting (T = 0), but the relative gradient 216 which influences 
the relative strain-rate gradient only reaches a value 9 at melting and has a nearly 
uniform value 3 below 263 K. 

3. Balance equations and boundary conditions 
We will consider the steady configuration of an ice sheet with flow confined to the 

plane Oxy of rectangular coordinates Oxyz, where Oy is vertically upwards. The fixed 
basal boundary is given by y =f(x), which is a smooth contour of (assumed) small 
slope reflecting the mean topography on the sheet lengthscale. The profile surface 
y = h(x) is traction-free, and must be determined by the kinematic condition 
describing the accumulation/ablation distribution. We introduce dimensionless 
coordinates with respect to a thickness magnitude do, dimensionless velocities with 
respect to an accumulation magnitude qm, and dimensionless stress with respect to 
an overburden pressure magnitude pgd,, where g is the constant acceleration due to 
gravity and p is the (assumed) constant ice density 918 kg m-3. Thus 

(2, Y )  = d(z, Y), f(x) = dof(z), h(x) = do &), 

(u, v) = q m ( c ,  c), ( q ,  b )  = qm(g,  @, 

J 
(9) 



InfEuence of temperature distribution on the motion of ice sheets 117 

where ( u , v )  are the in-plane velocity components, q is the accumulation density 
(volume flux of ice entering the sheet in unit time per unit horizontal cross-section), 
b is the basal drainage density (volume flux of ice leaving the sheet in unit time per 
unit horizontal cross-section), and q,/do is the strain-rate unit for 6, 

Mass balance, or incompressibility, is given by 

- a2  av 
az ay t r D  = -+- = 0, 

which is satisfied by a stream-function representation 

The momentum balance for the very slow viscous flow of a natural ice mass under 
gravity reduces to the equilibrium equations 

Let (n ,  s) denote a right-handed local coordinate system with n pointing normally 
out from the sheet on both surface and base. The concepts of sliding velocity and 
a sliding law on a smoothed basal boundary for the ice-sheet domain, which ignores 
details of small-scale topography, have been discussed in detail by Morland et al. 
(1983), and are adopted here. If p =f(2) is the bed slope, then the basal drainage 
condition is 

pu-v = 6 (g =f), (13) 

- (1  +p))"u,  = u+pv (g =f). (14) 

while the tangential (sliding) velocity U, is given by 

The normal and tangential tractions on the ice a t  the bed, &, t,, are given by 

The tangential traction -t, of the ice on the bed, has the same direction as the 
tangential velocity Us, and we adopt a sliding law with the separable form 

. .  

t ,  = t,p(-i,)ii, (y =A, (16) 

where -in is the positive basal pressure and p(0) is bounded. The limit behaviour 
t ,+O linearly with t, is compatible with a small surface-slope profile up to the margin 
(Morland & Johnson 1980, 1982). Linearity between t, and ii, is not essential, but 
has provided the most satisfactory correlation with Greenland and Devon Ice Cap 
data (Morland et al. 1983) using the isothermal theory. We adopt the form deduced 
from the Greenland data for our illustrations, noting that large variations of the 
function p( -in) result only in modest changes of the isothermal solution (Boulton, 
Smith & Morland 1983). Thus 

= 
PSdO 

z x 107 N rn-2 p(k-'&) = 2.5 x k = 
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FIGURE 1.  The 

0.4 0.8 1.2 

sliding function ,Z@,,) : ---, isothermal deduction ; - - - - 
fib 

therm a1 

i @ b )  = 9.0-6.657Pb (0 < p"b < 0.7), 
5 

= Z pcl,@i 

= 19.73+54.43(&,-1.3) @b 2 1.3), 

(0.7 Gj5b < 1.3), 
t - 0  

yo = -53.596, p1 = 253.643, p 2  = -324.134, 

p3 = 26.753, p4 = 176.028, p5 = -72.761, 
which is displayed in figure 1 .  

On the free surface ij = L(E) ,  with slope y = 6'(Z), 

deduction. 

(19b) 

(20) 

i (1 + 7 2 )  in = y2Fzz + iYgg - 2yczy = 0, 

(l+y2)is = y(ayu-azz)+(1-y2)iY5y = 0 

and the accumulation condition is 
yu--v = q ( i j  = L). 

4. Leading-order balances 
In contrast with the isothermal theory (Morland & Johnson 1980, 1982), the 

explicit dependence on variable a ( T )  must be retained, but the same coordinate 
scaling and perturbation analysis again leads to a much simpler leading-order 
approximation (Morland 1983). The thermomechanically coupled equations are 
reduced to a convenient parabolic system, but here, with T ( x ,  y)  prescribed, we again 
obtain a second-order ordinary differential equation for the profile y = h(x). 

In terms of the dimensionless variables (8) and (9), the deviatoric constitutive 
relations (2) and (3) become 

s= V r - 6 ,  
a(T)  
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where 
am , s=-. U O  v = s s ,  s=- 

P9do do Do a0 
With the units (6), a typical accumulation magnitude qm = 1 m a-l, and a minimum 
scale factor a, = 0.2, 

v z 5 x 10-3 x (+) loom z 10-3-+5 x 10+ for do = 200-3000 m, (24) 

that is, v41 

for a wide range of conditions. Unlike the isothermal case ti E 1 ,  we cannot assert 
that S= O(vD),  since Z(T) becomes increasingly smaller (table 1) as the tempera- 
ture decreases. However, with ti = for 
do 2 2000 m, so a small parameter v, = v/Zmi, could be introduced. As do decreases 
we expect Emin to increase, that is, Tmin to increase. However, since the equilibrium 
equations (12) and free-surface conditions (15) imply that iFvv and a,, are order-unity 
quantities and that a,, must vary smoothly with g with maximum magnitude at the 
bed, it can be inferred that 615 varies smoothly. That is, 6decreases in magnitude 
as ti decreases to maintain a smoothly varying and bounded ratio D/Z, so we now 
interpret (21) as = O ( v b / E ) ,  determine the scaling required by horizontal 
equilibrium as before, then obtain the associated strain-rate field 6. The leading-order 
solution is found to be consistent with the perturbation scheme. 

Following Morland & Johnson (1980, 1982), a series expansion in v, which assumes 
that b/Z remains of order unity everywhere, again yields an ice reservoir with 
horizontal free surface as the leading-order approximation, in which the vertical 
gradient of shear stress is negligible in comparison with the horizontal pressure 
gradient. As before, the shear-stress gradient is restored by a coordinate and 
stream-function scaling 

such that 5- and y-derivatives have equal status, and 

at an extreme T = 233 K, v / Z  5 

[ = E X ,  Y = € $  (€4 l),  (26a, b )  

are order-unity quantities, the latter imposed by the original velocity scaling with 
unit q,. Thus ii = O(E-') ,  and setting 

~ ( 5 )  = ~ g ) ,  r = ~ ' g )  = o(q, y = €r (28) 
shows that is the surface-slope magnitude. Now 

and the equilibrium equations (12) become 

Hence the horizontal balance requires 

€2 = v, (31) 
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and the vertical balance with free-surface condition (19a) then gives 
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(32) 
- 
uyy = -[H(EJ-yl+O(~2), 

Uxy = - e m  [H(t)-!71++O(e3). 

and in turn the horizontal balance with free-surface condition (19 b )  shows that 

(33) 

These results, which determine the leading-order a,, = ‘Txx and a,, in terms 

- 

of H ( [ )  independent of the stream function Y, suppose that 

and their [-derivatives, remain of order unity throughout the sheet; which we find 
self-consistent with the stream function determined by the shear stress (33) and 
constitutive relative (29). In  cold regions where ci is small, azY/a$ and a2Y/a[ ay  are 
necessarily small, and in warm regions where a - 1 the strain rates are restricted by 
the bounded stress. It is the coordinate scaling (26a), defining a long-aspect-ratio 
sheet, which imposes the order of magnitude ax, = O(s)  and hence the bound on 
(a2 Y/ay”)/ci independent of v, but the leading-order approximation (33) and resulting 
stream-function approximation require that the longitudinal deviatoric stress 
uxs-uyy and its [-derivative are small; that is, v < 1 and conditions imposed on the 
expression (34b) apply. Since a thermal boundary layer associated with a warm basal 
region would enhance y-derivatives a t  the expense of [-derivatives, and only 
[-derivative terms have been neglected in the O(s2)  contributions above, the present 
leading-order equations are valid for a thermal boundary layer in which varies 
rapidly with y. 

- - 

The leading-order invariants are given by 

where e = 61s. 

The remaining surface condition (20) becomes 

and the basal-drainage condition (1  3) becomes 

= 6, p = F’([) (y =f(S) = F ( [ ) ) ,  

(35) 

(36) 

where it is supposed that 1/91 5 1 ; that is, the bed slope does not exceed e in magnitude. 
Finally, the basal tractions (15) and tangential velocity (14) are given by 

ay u, = s-1 { --+O(€2)} aY 

so that the sliding relation (16), with definitions (17), becomes 

(39) 
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It can be shown from the above system of equations that a series solution 
H = Ho(5)  + e2H2(5) + . . . , Y = !Po + e2 Y2 + . . . , in e2 is appropriate ; that  is, the cor- 
rection t o  the leading-order solution is of order e2 = v ,  not order E (Morland 1983). 

5. Solution for prescribed temperature 
Given F(Z, ij), then Z(T) is a known function &((, Y). Let H ( [ ) ,  r(E[), Y(6, ij) andp(5, Y) 

denote the respective leading-order approximations (omitting a subscript 0 ) ,  all of 
order unity, then the leading-order shear stresses are 

Hence, to leading order, using the relations (35), (36), (29a), and (31), 
J = K ~ F ; ,  = f ; P 2 ( f ) ,  

I^ = s-%;, W“s-”;,). (43) 

(42) 
and the reciprocal relations ( 5 )  yield 

Thus, from the relations (35) and (41), 

(44) 
a v J  
a? 
-- - Y~;C;(6jY)9r-mH-!7)l> Y = -sgn(r?, 

where 6 is introduced to  select the appropriate square root of I^ as r changes sign, 
and 

For the constitutive model (7),  g( t )  is a polynomial with terms in t ,  t3 and t5. 

g( t )  = 2tW(et2) ( t  2 0). (45) 

(46) 1 .?7 

WE) 
.?7 

F(5)  

Define 
01(E ,  Y) = 1 w, Y’) g[-Yr(H-y’)I dy’, 

O z ( E , t i )  = j dl(L Y’)dy’, 

both vanishing on the bed jj = F(5) .  I n  the isothermal case 6 = 1, analogous functions 
g1 and g2 were introduced which vanished on the surface ij = H(6) (Morland & 
Johnson 1982). Integration from the given bed is more convenient here. Integrating 
the second derivative (44) gives 

where U, is the leading-order tangential velocity defined by (39) and satisfying a 
sliding law (40). Integrating again, 

y = Yb(5)-E[Y--F(~)lU,(~)+Yd2(5’Y), (48) 

Yk(() = b. (49) 

(50) 

and by the basal-drainage condition (38), 

The accumulation condition (37) now gives 
d 
- { - 4 M 5 )  - m31 u,(5) + Yd&, H(01) = q- 6. d5 



122 

In the isothermal case, when ci = 1, 
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which reduces the differential equation (50) to that  derived by Morland & Johnson 
(1982). 

When iis(t) is expressed in terms of H(6)  and r(t) by the sliding law (40) and stress 
expressions (32) and (33), (50) is a second-order differential equation for H(5).  There 
are two end conditions, H =  F a t  both margins, but their relative locations- the 
span - must be determined by the solution which has the additional integral property 
of zero net flux into the sheet from the steady-state assumption. However, like the 
isothermal case, the slope at either margin can be determined directly from the 
behaviour of the differential equation as H - t F .  Let r,, /3, denote the surface and 
bed slopes at a margin, qz  = q-band iim = U, at the same margin. By the definitions 
(46), dg,[(,H(()]/d<+O as H+F,  so letting H + F  in the differential equation (50) 
gives the result 

which is independent of E(T). Applying the sliding law (40) in the limit H - t  F shows 
that 

and hence 

(53)  

(54) 

since a t  a right margin 

ii > 0 - Us < 0,  a,, > 0, I‘m < 0, 1; = + 1, and necessarily rrn-/lrn < 0, 

and at a left margin 

ii < 0 3 iis > 0, 3,, -= 0, rm > 0, and necessarily rm--Pm > 0. 

Thus 9: < 0, (55) 
is a necessary condition; that  is, net outflow a t  a margin. The quadratic (54) has 
unique positive and negative roots rm defining the left and right margin slopes. The 
second-order differential equation (50) can be integrated from either margin with 
prescribed H = F and H’ = rm, and the far margin is located when H -  F- t  0. This 
is a standard numerical problem, but a bed topography F(E), in contrast with a flat 
bed F = 0, leads in general to a narrow region of large slope before a far margin is 
reached (Morland & Johnson 1982). A finite-slope ‘boundary layer’ may extend the 
solution toafarmargin. Alternatively, Dr K. Huttersuggests (private communication) 
that  a small adjustment of the starting margin with respect to  the topography may 
yield a small-slope steady-state solution valid up to a far margin. 

As in the isothermal case, (50) can be used as an algebraic equation to determine 
?is((), and in turn the function,u( - ia) in a sliding law of the form (16),if the profile 
H(E) is prescribed in addition to  q,  6 and F. With the profile and accumulation data 
used by Morland et al. (1983) for a Greenland Ice Sheet section, together with a 
temperature distribution constructed by L. D. Williams (private communication), we 
have determined the corresponding sliding function ,i@,) defined by the relations (16) 
and (17), which is displayed in figure 1. This modified sliding law is also used to  express 
equation (50) as a differential equation for H ( ( ) ,  and to investigate the influence of 
the different, temperature patterns. 
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Recall that validity of the above leading-order expressions required that [- 
derivatives of the stream function do not exceed order unity. We can now see that 
<-derivatives will remain of order unity if appropriate derivatives of F(5) remain of 
order unity provided that the sliding law is smooth; that is, there is no abrupt change 
of sliding resistance. Clearly, abrupt changes of sliding resistance or bed topography 
must enhance the local status of <-derivatives, which bring into play the longitudinal 
deviatoric stress and annuls the simple leading-order expression (33 )  for the direct 
shear stress. 

6. Accumulation and temperature patterns 
Our main purpose is to demonstrate the effects of temperature distribution, so we 

focus on a simple accumulation/ablation pattern, that labelled 4($) in the Boulton 
et al. (1983) application of the isothermal theory. I n  this, q depends only on elevation, 
having linear dependence below the equilibrium-line altitude he, cubic dependence 
between he and h, = he+500 m, and is constant above h,, with and dq/dh 
continuous at he and h,. For the comparison of profiles predicted by different 
temperature patterns we introduce common normalized coordinates by taking 

do = 2000 m, eo = 0.005, < = eoX = E ~ S - ~ C Y - ~ ~ ,  (56 )  
for all cases, so that the q- and H-unit is 2000m and the &unit is 400 km. The 
associated longitudinal velocity unit is qm/eo = 200 m a-l. The accumulation pattern 
is 

1 12.5 ( H - H e )  ( H  < H e ) ,  
q = 12.5 ( H - H e ) - 7 6 ( H - H e ) 2 +  136(H-He)3 (He  < H < He+0 .25) ,  (57 )  i 0.5 ( H  2 He+0 .25) .  

We adopt he = 1000 m (He  = 0.5) for the main series of computations, but investigate 
a sequence of he between 1000 and 1500 m for one temperature pattern to investigate 
the influence of equilibrium line altitude. 

The prescription of temperature and temperature gradient along the surface and 
base required by the features (i)-(iii) described in 5 1 can be most simply incorporated 
in a temperature representation that is cubic in y with coefficients depending on 5. 

(58 )  
Thus 

where 

and 

aTb 2r1 P+ 3r2 F ,  c2 = rl - 3r, F ,  -I c1= -- ay 

(59) 

Here Tb denotes T and aT,/aY denotes aT/ay evaluated on the bed y = F(f) ,  and 
similarly T, and aT,/ajj imply evaluation on the surface $ = R(9). Property (i) gives 

(61 1 
aT 
2 - - 0, T,  = T,- 16KH(z ) ,  a!7 

5 
I L M  140 
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where T, is the margin 
and property (ii) gives 
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temperature by choice of the margin as coordinate origin, 

Since p(f) appears in the surface temperature q, the temperature field is calculated 
simultaneously with the profile as the differential equation is integrated in steps from 
the margin. 

Finally, the different basal temperature properties (iii) are modelled by 

1; T,, Tb = T,, - <, (63a, b )  

Tb= ?L+T,E, Tb = (273.15-6+185-20E2)K, (63c, 4 
where T,  is a positive temperature. I n  distribution ( 6 3 d ) ,  the bed temperature 
increases from -6  "C a t  the margin to  - 1.95 "C a t  E = 0.45 (x = 180 km), and then 
decreases. Uniform bed temperatures T, = - 2, - 6and - 10 "C have been investigated 
for (63a),  and in (6312) T, = - 6 "C, = 4 K ,  which represents a 4 K rise per 400 km. 
Various !l& and 1; to describe monotonic cooling away from the margin in (63b) have 
also been investigated. 

7. Profiles and flows 
We now present surface profiles determined by the differential equation (50), and 

the associated longitudinal velocities given by expression (47), for the surface 
accumulation pattern (57) with zero basal drainage and the various temperature 
patterns described in $6, with aT,/ay = -20 K, and with the basal sliding velocity 
given by the relations (16)-(18). A flat bed is assumed so that basal effects due to  
temperature variation are not clouded by topography effects. With the equilibrium 
line altitude he fixed a t  1000 m (He = 0.5), the margin slope determined by the 
relation (54) and margin velocity determined by the expression (52) are fixed, since 
the margin accumulation given by the relation (57 )  a t  H = 0 depends only on He. 
The scale factor a,, in the rate factor (8) is assumed unity. 

First, for comparison, we present some features of the isothermal solutions a t  
T = -23 "C, T = - 15 "C, T = - 2  "(3. Figure 2 shows the profile, basal sliding 
velocity, and longitudinal velocities relative to the bed at three vertical sections for 
T = - 23 "C. For this relatively uniformly cold sheet, the differential motion between 
bed and surface accounts for only 10 yo of the surface velocity, but nevertheless, as 
demonstrated by Morland & Johnson (1980), the contribution of the shear term in 
the differential equation (50) is significant. This proportion increases as the uniform 
temperature increases, and table 2 gives details for the three temperatures, with x 
denoting distance from the margin, xd distance to the divide where the surface slope 
vanishes (or semispan, since the flat-bed profile is symmetric about the divide), and 
h, is the thickness a t  the divide. As T is increased, the rate of shear strain increases 
a t  a given stress, particularly as the melting point is approached, which is reflected 
by the increased proportion of differential motion. The shear-stress distribution, 
which depends on the surface height and surface slope, does not change dramatically 
between the three temperatures. The moderate span increase and thickness decrease 
correspond to a moderate slope decrease (at each point) as T is increased, which 
implies a decrease of basal shear stress and velocity (except a t  the divide and the 
margin), and hence an increased differential motion to balance the fixed accumu- 
lation. 
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TABLE 2. Surface and basal longitudinal velocities u,, uF, in m a-l, at three distances x 
from margin; zd is the semi-span, h, is the maximum thickness 

Next consider uniform bed temperatures Tb = -2  "C and Tb = -6  "C in the 
prescribed temperature pattern. The temperature variation with height a t  three 
sections, together with the resulting profile, basal velocity and relative longitudinal 
velocity a t  three sections, are shown in figures 3 and 4. For the moderately warmer 
bed (figure 3) the temperature influence on the rate factor is reflected by the increased 
differential motion, but there is negligible change of span and only a modest decrease 
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FIGURE 3. Solution for temperature variation with uniform bed temperature Tb = -2  "C: (a )  profile 
and temperature variation ; ( b )  longitudinal velocities relative to the basal velocity ; (c) basal- 
velocity distribution. 

in maximum thickness in comparison with figure 4. The span is moderately larger 
than the warm isothermal solution (T = - 2  "C), but much greater than the colder 
isothermal solution, while the maximum thickness is closer to the colder isothermal 
solutions. It is evident that there is no optimum mean-temperature solution which 
approximates to  the temperature-dependent solutions for these simple temperature 
patterns, and that the change of velocity distribution accompanying the temperature 
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FIQURE 4. Solution for temperature variation with uniform bed temperature Tb = -6 O C :  ( a )  profile 
and temperature variation ; (6) longitudinal velocities relative to the basal velocity ; (c) basal-velocity 
distribution. 

variation influences the large-scale features significantly. Moreover, the enhanced 
velocity gradients extend well beyond a negligible boundary layer, and reinforce the 
earlier isothermal-analysis conclusion (Morland & Johnson 1980) that the shear term 
contributes significantly to the profile equation. 

When solutions for monotonic decrease of the bed temperature away from the 
margin, (63b), are attempted, with non-trivial rate of decrease, a divide is not 
reached. A qualitative explanation is that  the shear motion becomes negligible as 
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the temperature decreases, both with distance from the margin and with height 
above the bed, so that a given accumulation must be carried by basal sliding, which 
implies non-zero basal shear stress and non-zero surface slope. 

Now consider (63 c )  with the bed temperature increasing monotonically away from 
the margin a t  a rate 1 K per 100 km and a margin temperature -6  "C. The results 
are shown in figure 5 .  By comparison with a uniform bed temperature - 6 "C (figure 
4), there are dramatic decreases of span and maximum thickness, and significant 
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decreases in the differential motion between bed and surface, even though the 
longitudinal warming is so small, again reflecting the strong temperature dependence 
of the rate factor near melting. Recall that  an increase of temperature in the 
isothermal solution causes an increase of span (table Z), emphasizing that temperature 
distribution, longitudinally as well as vertically, has a significant role. 

Finally, the quadratic distribution (63 d )  describes increasing then decreasing bed 
temperature away from the margin, with margin temperature - 6 "C and maximum 
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temperature - 1.95 "C a t  distance 180 km. Here the equilibrium line altitude (ELA) 
he in the accumulation pattern (57) was varied between 1000 and 1500 m. At ELAs 
1300 and 1400 m a finite semispan zd exceeding 180 km was obtained, so a 
decreasing-bed-temperature zone was included, but at ELA 1500 m a divide was not 
reached, similar to  (636). The results are shown in figure 6 for the ELA of 1300 m, 
but comparison with the monotonic warming results of figure 5 is not useful since 
they correspond to an ELA of 1000 m. Here we have demonstrated that a basal- 
temperature cooling towards the divide is acceptable provided that there has been 
sufficient flux in the accumulation zone to balance the ablation. It may be that a 
basal-temperature cooling away from the margin will provide a finite span for 
different accumulation patterns or basal sliding. 

For the larger basal temperature gradient i3Th/Tj = - 50 K and the uniform basal 
temperatures Th = -2  and -6  "C, the small-surface-slope solution fails before a 
divide is reached. Here the more dramatic cooling away from the base appears to 
eliminate the internal deformation required to balance the surface accumulation. This 
is similar to the explanation offered for the failure of (63 b)  with the smaller vertical 
temperature gradient. However, when basal temperature patterns (63 c, d )  with 
warming away from the margin are adopted, solutions with finite spans are obtained 
again, but both span and thickness are significantly greater. This reflects the smaller 
rate of internal deformation associated with colder ice. It is evident that the interplay 
of temperature pattern and internal flow is important, and physically compatible 
temperature and velocity fields are only guaranteed by solution of the thermomech- 
anically coupled flow equation. 

8. Modified sliding law 
For given profile, temperature distribution and accumulation distribution, (50) 

becomes an algebraic equation for the basal sliding velocity ii&), and the basal 
pressure and shear traction are given by (32) and (33). Adopting the profile and steady 
accumulation data for the 70" N section of West Greenland used by Morland et al. 
(1983) in the corresponding isothermal theory, together with a temperature distrib- 
ution constructed by L. D. Williams (private communication) from an approximate 
thermal analysis proposed by Jones (1978), we have determined the implied function 
,Z&) when a linear sliding law of the separable form (16) is assumed. The profile and 
temperature contours are shown in figure 7 (a ) ,  which also indicate a zone of basal 
melting. With the scale factor a, = 1 ,  the predicted basal velocity is directed away 
from the margin over a large part of the bed, curve @ in figure 7 ( b ) ,  and a reduced 
scale factor, to decrease the differential motion and thus increase the basal velocity 
(towards the margin) is required to achieve a physically sensible result. Curves@and 
@correspond to a, = + and a, = + respectively, and the latter gives a correct direction 
of sliding everywhere. Figure 7 ( c )  shows longitudinal velocity distributions for a, = f 
when the bed topography is incorporated. 

However, the basal velocity is still non-monotonic, and incompatible with a 
single-valued sliding relation. A smoother distribution is obtained by neglecting the 
bed topography; that  is, assuming a mean flat bed, and is shown as curve@, but 
the non-monotonic feature remains. Thus the non-monotonic velocity is not a 
consequence of the bed topography, but results from the local non-monotonic surface 
slope in the adopted profile. That is, while the surface profile is not sensitive to 
moderate variation of a prescribed sliding function $(&), the sliding velocity and 
associated function @@b) required for a given profile are strongly sensitive to local 
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FIGURE 7. (a) Profile and temperature contours for the 70" N section of West Greenland. ( b )  
Basal-velocity distributions: @, a, = 1 ; @, i; @, j; @, j, flat bed at sea level; @, j, flat bed at sea 
level, smoothed surface contour. (c) Longitudinal velocities relative to the basal velocity for case 
@ above. 

changes in the surface slope and associated basal shear stress. It is therefore not sens- 
ible to incorporate small-scale variations of surface slope inferred from observation. 
Smoothing of the profile leads to a physically acceptable distribution (curve@), and 
in turn to the function ,&&) shown in figure 1 €or comparison with the isothermally 
deduced law. 
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Repeating the profile constructions for the various temperature patterns with the 
modified sliding law gives little difference in the overall solutions. The chief reason 
is that  the two sliding functions ,Gc”(ljb) (figure 1)  are very similar for small Pb; that 
is, near the margin. It was concluded in the Boulton et al. (1983) isothermal study 
that i t  is a change of the sliding function ,ii@,,) near the margin which produces 
significant changes of span and maximum thickness, and that profiles are much less 
sensitive to changes of sliding function in the central zone with appreciable 
overburden. We suggest that the much simpler (and less controversial) non-slip 
condition could be adopted away from the margin for non-temperate basal conditions, 
with appropriate sliding as the overburden approaches zero so that the differential 
equation (50) is valid up  to the margin, which is the starting point for the integration. 

9. Concluding remarks 
A plane steady-flow analysis has been used to demonstrate the significant effects 

of temperature distribution through an ice sheet caused by the strongly temperature- 
dependent viscous rate factor. While the temperature patterns are prescribed, 
without solution of the energy balance, we suggest that  they are compatible with the 
limited observations available and cover a wide range of plausible variations. In  order 
to focus on the influence of temperature, results for one surface accumulation 
distribution and one sliding law on a flat bed are presented, with comment on results 
for an alternative sliding law. Isothermal results (Boulton et al. 1983) have 
demonstrated that moderate variation of the accumulation distribution and of the 
basal sliding away from the margin do not have significant effects on the internal 
flow pattern. 

We find that there is no optimum mean temperature for which the isothermal 
solution approximates satisfactorily to solutions for even simple temperature patterns 
varying only with depth. But also the enhanced velocity gradients in the warmer basal 
regions (of tho temperature patterns considered) do not induce a high-shear-rate 
boundary layer with negligible shear rate through the bulk flow, which are the 
essential features of Nyc’s elementary model. That is, the viscous response of the ice 
is not confined, in general, to a thin basal boundary layer which can be replaced by 
a sliding discontinuity. This conclusion can also be inferred from a general analysis 
of the full thermomechanical balances (Morland 1983), but is based, of course, on the 
assumption of homogeneous ice properties throughout the sheet. If the older ice in 
the basal layer is significantly less viscous than the bulk of the ice sheet, then indeed 
the shear rate in the basal region would be further enhanced. It is also shown that 
very small variation of bed temperature with distance from the margin can have a 
significant effect on the internal flow and profile, so that both depth and longitudinal 
variation of temperature are important. 

The sensitivity of the flow and profile solution to changes in an assumed 
temperature distribution suggests that  flow predictions based on an extrapolation of 
a few measured temperature profiles with depth must be open to question. A solution 
of the therniomechanically coupled flow system, in which both vertical and horizontal 
advection, and internal dissipation, are significant, isessential to determine compatible 
flow and temperature fields. The iteration procedure (Hutter 1982,1983) may exhibit 
unsatisfactory convcrgence properties because of the sensitivity to temperature 
change. Direct solution of the reduced parabolic system (Morland 1983) provides an 
alternative method which determines flow and temperature simultaneously, but a 
satisfactory numerical algorithm has not yet been constructed. 
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